Travel and Transportation in the Age of BigData

Ugur Demiryurek, Ph.D.
Associate Director,
Integrated Media Systems Center (IMSC)
Viterbi School of Engineering
University of Southern California
Los Angeles, CA 90089
demiryur@usc.edu
Outline

• ADMS - Data Collection and Integration
• TRAVICS - Predictive Transportation Analytics
• ClearPath - Route Planning
• FleetR - Route Planning for Fleets
• SBus - Public Transportation Analytics
ADMS
Data Collection and Integration

• **Research:** Collect, store and integrate real-time transportation data from 15K+ sensors and 7 Agencies
 - Efficient retrieval and storage of high-rate streaming data
 - Design and implement scalable database
 - Integration of sensor, road network, and socio-economic datasets
ADMS
Data Collection and Integration
ADMS
Data Collection and Integration

- **System**: ADMS to be used by LA Metro
ADMS
Data Collection and Integration

- **System:** ADMS to be used by LA Metro

- Did Expo Line increase transit patronage?
- Did Expo Line impact traffic performance?
TRAVICS

Predictive Transportation Analytics

- **Research:** Traffic Prediction
 - What is the traffic speed in the h-th minute? (h: prediction horizon)

- Limitation of out-of-box prediction tools
 - Traffic dynamics make it hard to use out-of-box M/L techniques for accurate prediction
 - Cannot predict sharp speed changes at the boundaries of rush hours
 - Cannot predict the traffic speed in a long term range (with large h)

- Locally Weighted ARIMA (Autoregressive integrated moving average)
TRAVICS

Predictive Transportation Analytics

- **Research:** Event Impact Prediction
 - Traffic Collision
 - I-5 S. at Colorado Blvd
 - 10/30/2012 (Tuesday) 3:00 pm
 - Impact Modeling
 - Spatial and temporal models
 - Autoregressive integrated moving average (ARIMA)
TRAVICS
Predictive Transportation Analytics

- **Research**: Context Aware Online Traffic Prediction
 - Joint work w/ Prof. Mihaela Van de Schaar (UCLA)
 - Context: time, space, event, weather
 - Use context to select the predictor
 - Online Learning: Reward the predictors
TRAVICS
Predictive Transportation Analytics

• **Research**: Origin/Destination (O/D) Matrix Estimation
 • Determine the underlying behavior of the system
 • Determine the needs of the system
 • See invisible problems
 • Plan more accurately

• O/D Matrix Estimation:
 • Surveys:
 • Costly and inaccurate
 • Vehicular sampling
TRAVICS
Predictive Transportation Analytics

- **Research**: Origin/Destination Matrix Estimation
 - Modelling problem as Linear Opt
 - Finding K-Shortest path for ODs.
 - $\min_x ||Ax - b||$.
 - A: Structure of road network and traffic congestion.
 - b: Sensed traffic counts.

![Graph showing distribution of number of OD pairs with certain size of flow](image1)
![Map showing major estimated OD flows](image2)
TRAVICS
Predictive Transportation Analytics

- **System**: TRAVICS– Traffic Event Surveillance and Analysis System

[JSTSP15, SSTDM14,ICMD13,ICDM12,SIGSPATIAL11, SIGSPATIAL10], Underlying Technology for Many Apps
ClearPath
Route Planning

- **Research:** Time-dependent Route Planning
- “Predict-and-Avoid” instead of “Detect-and-React”
ClearPath
Route Planning

- **System**: ClearPath – a web and mobile platform that saves on average 18% travel time over Google
ClearPath
Route Planning

• **System:** ClearPath – a web and mobile platform– that saves on average 18% travel time over Google

• **Raised:** $1.2M from MM Partners, Amplify and TJS; and licensed from IMSC in December 2014
FLEETR
Route Planning-2

Research: Vehicle Routing in Time-dependent Road Networks

- **Input:**
 - Time-dependent network $G(V,E,T)$
 - n customers with locations, m vehicles located at a central depot to make deliveries.

- **Output:** A set of routes that serve all customers at minimum cost (e.g., distance, travel time).

- **NP-Hard problem**
 - For 120 stops per day, there are $120! = 6,689,502,913,449,135,000$ alternative s for ordering.
FLEETR
Route Planning-2

- Year 1: Develop Heuristic Based Algorithms
 - Nearest Neighbor Heuristic (NNH)
 - Sweep Heuristics
 - Integrate with Oracle Spatial framework
- Year 2: Local Search Improvement
 - Extend heuristic algorithms with Local Search to improve accuracy
 - Accuracy: Improved 22% with respect to Year 1, and now within 3% of best known solution
FLEETR
Route Planning 2

• Experiments with real-world dataset from Velocity Express
 – 258 nodes, 9 cars (routes) with capacity= 30
 – Running time: 52 seconds

https://routific.com/: The smaller the orders, the quicker Routific can come up with a solution. For ~50 orders and ~15 vehicles, an API call takes about ~30s. For ~250 stops and ~15 vehicles, it takes about 2 minutes.
FLEETR

Route Planning 2

- **System**: FLEETR - Time-dependent Vehicle Routing

No. of vehicle
3

Depot
87952

Delivery points
- Browse: deliveryWithCords.json

Setting Date
Monday

Setting Time:
8:15 - 10:15

Heuristic
TD_Sweep

Submit

We think you had better schedule 52 more minute(s) and choose more vehicle(s) ~

Total Time (H:M:S)
2:52:2
SBus
Public Transportation Optimization

- **Research**: Public Transportation Analysis and Planning
 - Real-time monitoring – situational awareness
 - Bus route reliability
 - Delay prediction based on real-time traffic
 - Plan trips based on expected delays
SBus
Public Transportation Optimization

• **System**: SBus- A Real-time Transit Vehicle Analytics Framework
Questions?

Ugur Demiryurek
demiryur@usc.edu
Next Speakers

10:30 - 10:50 Vehicular Sensing, Communication, and Green Transportation
 Bhaskar Krishnamachari,
 Associate Professor of Electrical Engineering, USC

10:50 - 11:10 Context-Aware Online Traffic Prediction
 Mehaela van der Schaar,
 Professor of Electrical Engineering, UCLA