Introduction

- Mobile videos are prevalent
- YouTube statistics: ~20% mobile videos, ~3 hours/min upload
- Increasingly geo-tagged
- Spatial-temporal video queries are demanding, e.g.,
 “Find videos recorded in front of Tommy Trojan on the 2013 USC-UCLA football game day”

Challenge:
- The fusion of location, time and direction
- Existing indexes are not efficient

How to efficiently index and search the large-scale videos by using the geo-metadata?

Video Frame Model

- Model a video frame \(f \) in form of \((p, \theta, R, t)\)
 - \(p \): camera location
 - \(\theta \): view orientation
 - \(R \): maximum viewable distance
 - \(t \): timestamp

Existing Indexes

- **R-tree [1]**
 - Range query \(q_{\text{range}} \)
 - results: \(f_{11}, f_{12}, f_{15}, f_{16} \)
 - visit: node\#4; FOV\#7
 - Directional query \(q_{\text{dir}} \)
 - results: \(f_{11}, f_{12}, f_{13}, f_{14} \)
 - visit: node\#4; FOV\#8
 - Drawbacks
 - Large “dead space”
 - Large “overlap”
 - No directional info in index nodes
 - Only based on area optimization criteria

- **Grid based index [2]**
 - Drawbacks
 - Need prior knowledge: cell size
 - Store direction info 3rd level only
 - Unnecessary visit: \(f_{15}, f_{16}, f_{17}, f_{18} \)

A New Index: Orientated R-tree (OR-tree)

- Store smaller MBRs
- Incorporate orientations into internal index nodes
- Incorporate combined optimization of
 - Area of camera locations
 - Orientation
 - View distance \(R \)

Experimental Results

Related Work

Conclusion and Future Work

- We proposed a new index called OR-tree to index FOVs for efficient video search.
- Our future direction is to index video considering time of videos
- Highly frequent update also need to be supported.