Introduction

- **Motivation**: According to the annual transportation report [1], approximately 50% of freeway congestion is caused by non-recurring issues, such as traffic incidents, weather, special events.
- To avoid such congestions, we aim to predict the impact of events. The predicted result can be either used by a driver directly to avoid potential gridlocks or consumed by a smart route-planning algorithm.

Event Impact Prediction

- **Problem Definition (Propagation phase)**
 + Given an even just happened, what is the impacted distance (with speed decrease no less than Δν%) in the next t minutes?
 (Input: Event reports, sensor readings Output: behavior vector)

- **Proposed Solutions & Sample Training Result**
 + Opt 1: matching Event Attributes with previous event (EA)
 1) retrieve current event attribute(s)
 2) find historical events with same attributes
 3) use their corresponding behavior vector for prediction
 + Opt 2: matching the first 5-min Propagation Behavior (PB)
 1) cluster the behavior vector from all historical events
 2) get the first 5-min propagation behavior from current event
 3) use the closest cluster centroid for prediction
 + Opt 3: matching both attributes and 5-min behavior (EA+PB)
 1) Cluster based on both behavior vector and event attributes
 2) & 3) same with option 2.

 Note: the training result is based on events and sensor data collected in 06/2012

Prediction Result on traffic collision events

- Case 1: 07/02/2012 (Mon) 15:20 / on I-405 North at West LA
- Case 2: 07/07/2012 (Sat) 18:19 / on I-5 South at Central LA

Case Study

- **Sample Traffic Collision Event**
 + Location: I-5 S. at Colorado Blvd.
 + Time: 10/30/2012(Tue) 3:00 PM

Impact Measurement:

 + Speed Change Ratio:
 \[
 \Delta \nu = \frac{\text{avg}(\nu_i) - \nu_i}{\text{avg}(\nu_i)} \times 100\%
 \]

Observations:

- further from event location later the speed decrease
- further from event location shorter the impact period

Event Propagation Modeling

- **Project the propagation from 3D to 2D (fix the speed decrease)**

- **Piecewise fitting (propagation phase, clearance phase)**
 \[
 g = \begin{cases}
 h_1(x) & x \leq t_0 \\
 h_2(x) & x > t_0
 \end{cases}
 \]
 \[h_1(x): \text{propagation phase} \]
 \[h_2(x): \text{clearance phase} \]

- **Behavior Model Construction**
 In Propagation phase:
 Behavior Vector (\(d\)) is defined as
 \(<d_0, d_1, ..., d_{30}>\)
 for the first 30-minute propagation

 The fitting function is used to interpolate

Related Research

- Predicting accumulative delays and impact region for traffic incidents with fixed thresholds
- Predicting a single clearance time for traffic accidents

Future Work and Reference

- Include more event attributes for the propagation behavior prediction
- Model and prediction events’ clearance behavior

[1] FASANA MOTION.
http://www.metro.net/board/Items/2012/03_March/20120322RBM item57.pdf