Introduction

- **Introduction:** the significant growth in the number of smartphone users, the phone’s hardware and software features, and the bandwidth enables the platform of spatial crowdsourcing

Spatial Crowdsourcing
- Crowdsourcing a set of spatial tasks to a set of workers
- Spatial task is related to a location
- Workers performing the spatial tasks by physically travelling to those locations

Spatial Task Publishing Mode
- Worker selected tasks (WST)
- Server assigned tasks (SAT)

Previous Model

- **Server Assigned Mode**
 + Server assigns to each worker the tasks close to him
 + Server can globally optimize the number of assigned tasks

- **Maximum Task Assignment**
 + Maximize the number of tasks assigned to the workers
 + Satisfying the workers’ constraints

- **Maximum Flow Problem**
 + Greedy (GR) Strategy
 + Least Location Entropy Priority (LLEP) Strategy
 + Nearest Neighbor (NNP) Strategy

Motivation

- **Limitation of Previous Model**
 + It is assumed that one worker can finish all the tasks assigned to him
 + It doesn’t consider the travel cost from one location to another
 + It doesn’t consider tasks’ expiration time (deadline), i.e. if tasks cannot be started before their deadlines, it will expire

- **GeoCrowd: Worker Selected Mode**
 + Considering the above two constraints
 + A worker should have a scheduling about how to finish these tasks

Problem Definition

- **Task t and Worker w**
 + Task t and worker w have location information l(t) and l(w)
 + Task t has expiration time d(t)

- **Task Sequence R**
 + Given a worker w and a set of tasks \(T = \{t_1, t_2, \ldots, t_n\} \)
 + Task sequence R is a subset of tasks: \(R = \langle t_{p1}, t_{p2}, \ldots, t_{pr}\rangle \)
 + E.g. \(R = \langle t_1, t_2, t_3, t_4, t_5\rangle \)

- **Valid Number \(\alpha_R \) for a task sequence R**
 + \(\alpha_R \) is the number of tasks which can be finished on time
 + E.g. \(d(<t_1, t_2, t_3, t_4, t_5>) = 2 \)

- **Maximum Task Scheduling (MTS)**
 + Given a worker w and a set of tasks T
 + MTS: find a valid task sequence R which has the maximum valid number

Case Study and Problem Complexity

- **Greedy Choice**
 + Greedy chose the task nearest to the worker or with least expiration time?

- **Optimal solution**

- **Problem Complexity**
 + MTS problem can be proved as NP-hard by reduction from Travel Salesmen Problem (TSP)
 + Approximation Algorithm

Conclusion and Future Work

- Develop exact and approximate algorithm for MST problem
- Extend MTS problem from WST TO SAT mode